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Abstract. We begin by revisiting the so-called Caldirola–Kanai Hamiltonian and discuss its
inherent ambiguity: does it represent a dissipative harmonic oscillator (HO) subject to a friction
force, or does it describe an HO with a time-dependent mass (TDM)? Although classically
both descriptions do coexist, in the quantum domain the solution of the Schrödinger equation
(or Heisenberg equations of motion) with a TDM does not present inconsistencies, however, the
dissipative Hamiltonian shows violation of the Heisenberg uncertainty principle. This violation
is avoided by introducing a stochastic force in the equations of motion, which will take care
of the fluctuations due to the environment. Once the distinction between the dissipative and
amplifying Hamiltonian is made clear, we consider the problem of the quantum TDM HO
subject to dissipation, showing that both phenomena may be merged and described by a single
Hamiltonian, theamplifying–dissipative Hamiltonian. We obtain the solutions of the Heisenberg
equations of motion for the canonical momentum and position; next, we specialize on the weak
damping limit and analyse the effects of the amplifying–dissipative process on the mean values
of the physical variables.

1. Introduction

From the phenomenological point of view, the problem of macroscopic friction is
satisfactorily described by Newtonian mechanics [1, 2], since suitable friction forces can
always be added to the equations of motion, although the task of solving the differential
equations remains. As friction forces are not conservative, they cannot be included in
a Lagrange function without introducing some ambiguity [3, 4]. Nevertheless, physicists
have been persistent in trying to introduce that phenomenon into the classical frameworks
of Lagrange and Hamilton [3–6]. This interest in describing the friction by Lagrangian
and Hamiltonian mechanics grew with the arrival of quantum mechanics, because the new
theory was essentially a Hamiltonian one, and researchers were and are always looking for
the quantum version of a classical motion.

Since the pioneer work of Bateman [3] on variational principles related to the Lagrangian
formalism of non-conservative systems, the paradigm to the problem of friction has been
the harmonic oscillator (HO) subject to a force proportional to the velocity. Later, Caldirola
[7] and Kanai [8] introduced, independently, a Hamiltonian function, that is known after
their name, the CK Hamiltonian, see (3), which is the simplest one that permits Newton’s
equation of motion to be derived,

q̈ + (γ /m)q̇ + ω2
0q = 0. (1)
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Thus, with a classical Hamiltonian describing friction, the quantization becomes possible
by using the usual prescription of substitutingc-numbers byq-numbers, but several
inconsistencies arise, the most serious being the violation of the Heisenberg uncertainty
principle. For more details see the review paper of Dekker [9]. Nevertheless, many papers
continued to be written on this theme, containing new insights, solutions and proposals in
order to surmount the conceptual and formal difficulties, because that problem (a special
case of the general class of TD quadratic Hamiltonians) is useful for understanding the
physics of open systems [10–14].

In order to remove the uncertainty principle violation, the CK Hamiltonian (3)
received another interpretation [15–17]: Newton’s equation (1) can also describe a distinct
phenomenological problem, namely, an HO, not subject to a friction force, but containing
a time-dependent mass (TDM) with exponential accretion,m(t) = m0 exp(ζ t), where
ζ = γ /m. Thus, one has one single second-order differential equation, (1), representing two
quite different problems, with, naturally, only one solution. However, as will be seen below,
this ambiguity can be removed by conveniently defining the meaning of the Hamiltonian
and its variables. It is worth noting that from the classical point of view both interpretations
are physically possible, the CK Hamiltonian describing either a dissipative HO or a TDM
HO, with no inconsistencies in the analysis of the solutions.

According to Havas [4], dissipative systems can be handled following this procedure:
first, the Lagrange function is multiplied by an adequateintegrating factorand second, the
canonical momentum and position must be distinguished from the physical ones, where
coincidence only occurs for non-dissipative systems. Thus, following this recipe, the
Hamiltonian function no longer represents the energy of the system, but it continues to
be the generator of its motion; the total energy, as usual, is written as the sum of the kinetic
plus potential energies. For the TDM HO nothing changes, the Hamiltonian and energy
continue to coincide, and no distinction arises between the canonical and physical variables
(position and linear momentum).

The quantization of the TDM HO does not present any dispute about its interpretation
or consistency, however, because the quantized dissipative HO the introduction of the
integrating factor,per se, in the Lagrange function is not sufficient to guarantee the
Heisenberg uncertainty inequality. Nevertheless, this flaw can be remedied by adding,
ad hoc, to the conservative force, a phenomenological time-dependent (TD) stochastic
force [18, 19]. Borrowed from the Langevin equation for the Brownian motion, this
procedure avoids the occurrence of unphysical results, such as the HO mean energy going
asymptotically to a value below the ground state, or the violation of the Heisenberg or
Robertson-Schrödinger uncertainty inequalities. Therefore, both the integrating factor plus
the TD stochastic force will respond to the effects of an environment acting on the system,
causing energy dissipation or absorption until thermal equilibrium is reached. In order to
verify the consistency of this procedure it was shown [19] that the introduction of these two
elements led to the verification of the fluctuation–dissipation theorem [20].

The microscopic origin of the CK Hamiltonian was originally demonstrated in [9]:
a transformed Hamiltonian of the whole system consisting of a central HO interacting
with a set ofN (N � 1) HOs (thebath or reservoir) can be written as the sum of two
commuting terms, the first one is exactly the CK Hamiltonian whereas the second is related
to the reservoir. Later, the authors of [21] related the CK Hamiltonian to the problem of
Caldeira and Leggett [22], showing that the wavefunction of the whole system (without
the use of path-integral formalism) is factorized as a direct product to two wavefunctions
associated with two independent Hilbert spaces. The wavefunction of the central HO is
the solution of the Schrödinger equation with CK Hamiltonian, (although also involving the
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coordinates of the bath), whereas the other is a direct product of the wavefunctions of theN

oscillators. Thus, although the whole wavefunction is factorizable into two wavefunctions,
the coordinates of the central HO and bath oscillators cannot be disentangled. This implies
that the CK Hamiltonian alone is not sufficient to respond to the quantum dissipative problem
(as already noted in [9]) therefore the presence of the bath is essential for a correct treatment.
Here we substitute the effect of the bath by an effective Markovian TD stochastic force.

In this work we are concerned with the problem of the concomitant mass increment
(TDM HO) and energy dissipation (HO interacting with the environment). Thus, we
introduce theamplifier–dissipative(AD) Hamiltonian and also distinguish between the
canonical or mathematical variables and the physical ones. Subsequently, the AD
Hamiltonian is quantized, the Heisenberg equations of motion are solved and the mean
values of observables compared with those occurring in two particular situations, the TDM
HO and the purely dissipative HO. From the general point of view the problem treated
here is quite realistic, for instance, an electromagnetic mode being pumped in a cavity
and suffering dissipation on its walls; or trapped atoms interacting with their environment
or radiation [23]. The present treatment of dissipation was used for a particle trapped by
oscillating fields, when a time-dependent frequency occurs [24]. The friction force arises
as a result of the viscosity created by the presence of a background gas constantly colliding
with the trapped particle or it may be the result of photon interaction in the so-called optical
molasses [25].

The paper is organized as follows: in section 2 the conceptual differences between a
purely dissipative HO and a non-dissipative TDM HO are outlined. In section 3 we consider
the TDM HO subject to dissipation and show that the usual integrating factor, introduced
to take care of pure dissipation, is modified as a result of to the presence of the TDM;
next we obtain the classical and quantum AD Hamiltonians. In section 4 the Heisenberg
equations of motion for the canonical variables are solved exactly. In section 5, we discuss
the solutions for the under-amplified case in the weak friction limit, and we also recover
old solutions for the dissipative case with time-independent mass. Section 6 is devoted to a
summary and conclusions, whereas the appendix contains the details of the solution of the
Heisenberg equations of motion.

2. Revisiting the Caldirola-Kanai Hamiltonian: the dissipative versus time-dependent
mass harmonic oscillator

We briefly review the CK Hamiltonian that historically [7, 8] describes the phenomenon of
energy dissipation. We then compare the expressions for the energy, position and momentum
variables, with those obtained from the same Hamiltonian although adopting the TDM HO
interpretation, whichis not dissipative. In this section the treatment is classical.

The usual way to introduce friction in Newtonian mechanics is done by adding, in
Newtons’s second law, a force proportional to the velocity,−γ q̇. However, there is an
ambiguity in defining the Lagrange function from which one could derive the equations
of motion; such an ambiguity was thoroughly studied in [4] and the existence of several
Lagrange functions (equivalent Lagrangians), or more exactly, several integrating factors,
(leading to the same equations of motion) was noticed, although leading to different
Hamiltonians. The simplest Lagrange function is

L(q, q̇, t) = [ 1
2mq̇

2− V (q)] eλt (2)

where the exponential factor is theintegrating factor. By using Lagrange equations,
Newton’s second law, (1), is recovered. The Hamilton function is obtained following
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the usual recipe of the theory [1, 2], and for a harmonic force, it is

H(p, q, t) = p2

2m
e−λt + 1

2
mω2

0q
2 eλt (3)

called the CK Hamiltonian, after the pioneer works of Caldirola and Kanai [7, 8]. However,
care must be taken when defining the physical quantities. With the introduction of the
integrating factor, the HO is not a closed system, thus (3) no longer stands for the energy,
but continues as the generator of the motion. We must also distinguish between canonical
momentump and the physical momentumpphys,

p = ∂L

∂q̇
= mq̇ eλt pphys= mq̇ = p e−λt . (4)

The expressions for the position and physical momentum are

q(t) = [a eiωt + a∗ e−iωt ] e−
1
2λt (5)

pphys(t) = m
[
a

(
− λ

2
+ iω

)
eiωt − a∗

(
λ

2
+ iω

)
e−iω0t

]
e−

1
2λt (6)

wherea anda∗ are constants determined from the initial conditionsp0 andq0,

a = p0+mq0(
1
2λ+ iω)

2imω
(7)

and the shifted frequencyω = [ω2
0 − (λ/2)2]1/2 is assumed to be real and corresponds to

the under-damped regime. Writing the total energy as the sum of the kinetic plus potential
energies,E = 1

2mq̇
2 + 1

2mω
2
0q

2, we obtain the following relation between the energy and
Hamiltonian function,

E = H(p, q, t)e−λt . (8)

As t →∞, the position, physical momentum and energy go eventually to zero.
Now, if one considers the HO having a TDM with exponential accretion,m(t) = m0 eζ t ,

where ζ ≡ λ, the equation of motion is the same as (1). However, adequately defining
the momentum (now that the canonical and physical coincide) and energy (which coincides
with the Hamiltonian function), one verifies that there is no dissipation as in the previous
consideration: the Lagrange function is

L′(q, q̇, t) = 1
2m(t)q̇

2− 1
2m(t)ω

2
0q

2 (9)

and the Hamiltonian function is

H(p, q, t) = E = p2

2m(t)
+ 1

2
m(t)ω2

0q
2. (10)

The expression for the position is

q(t) = [a ei�0t + a∗ e−i�0t ] e−
1
2 ζ t (11)

which coincides with (5) and the linear momentum is

p(t) = m0

[
a

(
− ζ

2
+ i�0

)
ei�0t − a∗

(
ζ

2
+ i�0

)
e−i�0t

]
e

1
2 ζ t (12)

that differs from (6) by the sign in the argument of the exponential factor, and�2
0 =

ω2
0 − (ζ/2)2. So, we see that forζ > 0, ast →∞, the position goes to 0, the momentum
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goes to∞ (in quantum mechanics this behaviour leads to the phenomenon of squeezing)
whereas the energy remains finite but not constant,

E = H(p, q, t) = 1

2
m0

[
a

(
− ζ

2
+ i�0

)
ei�0t − a∗

(
ζ

2
+ i�0

)
e−i�0t

]2

+1

2
m0ω

2
0

[
a ei�0t + a∗ e−i�0t

]2

. (13)

Taking the average of equation (13) over one period of oscillation results in

E
T = ω2

0

�2
0

[
1

2
mω2

0q
2
0 +

1

2

p2
0

m
+ 1

2
ζp0q0

]
= ω2

0

�2
0

[
E(0)+ 1

2
ζp0q0

]
(14)

which, for conveniently chosen initial conditions andζ/2 ' ω0, can be much larger than
the energy (constant of motion) for the case of constant mass,E(0) = 1

2(mω
2
0q

2
0 + p2

0/m),
thus characterizing theenergy amplification.

Therefore, we saw that a unique equation of motion leads to two conceptually different
physical problems. In the first case the energy is dissipated while in second it is amplified.
Now we shall look at the situation when both phenomena, amplification and dissipation,
occur simultaneously.

3. The phenomenological AD Hamiltonian

As in the previous section, the effect of friction is introduced in the Lagrange function as
an integrating factor, however, the argument in the exponential factor can no longer be
considered as linear int ,

L(q, q̇; t) = [ 1
2m(t)q̇

2− V (q; t)+ qF(t)] eγ (t) (15)

the function γ (t) is to be determined such that the equation of motion, derived from
Lagrangian formalism, must be the same as that written from Newtonian equations. The
additional potentialqF(t), whereF(t) is a real stochastic force, is introduced in order
to take care of fluctuations of the physical observables. The integrating factor and the
stochastic potential both respond to the problem of friction, produced by the action of
the environment on the HO, for the description of the Brownian particle. In quantum
mechanics the introduction of a stochastic force is crucial in order to avoid the violation of
the Heisenberg uncertainty inequality.

The second-order differential equation, for the positionq, obtained from the Lagrange
equations and from Newton’s second law are,

q̈ = −
(
ṁ

m
+ γ̇

)
q̇ + 1

m

[
− ∂V (q; t)

∂q
+ F(t)

]
(16)

q̈ = −
(
ṁ

m
+ λ

m

)
q̇ + 1

m

[
− ∂V (q; t)

∂q
+ F(t)

]
(17)

respectively, andm = m0 eζ t with ζ > 0. The above equations coincide for

γ (t) = γ0

ζ
(1− e−ζ t ) (18)

whereγ0 = λ/m0. The following limits hold,

lim
t→∞ γ (t) =

γ0

ζ
and lim

ζ→0
γ (t) = γ0t (19)
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where the second limit recovers the argument in the exponential factor for the purely
dissipative Lagrange function. Here we shall consider that the stochastic force is Markovian,
its mean in a statistical ensemble is zero and its autocorrelation function is a Dirac delta-
function (memoryless):〈F(t)〉 = 0 and 〈F(t)F (t ′)〉 = 2dδ(t − t ′). The constantd is
determined such as to satisfy the fluctuation–dissipation theorem [18, 19, 26, 27]

d = h̄
2
m0ω0γ0

�2
0

ω2
0

coth

(
h̄ω0

2kBT

)
(20)

and the prefactor�2
0/ω

2
0 avoids the unphysical asymptotic expressions introduced in

section 5. In the present semi-phenomenological context we cannot determine whether
the argument of ‘coth’ is modified by the TDM, only a microscopic treatment could provide
more precise information.

Now, performing a point transformation on the coordinate,

Q = q exp

(
γ (t)

2

)
(21)

a new Lagrange function is obtained,

L(Q, Q̇; t) = 1

2
m(t)Q̇2+ 1

2
m(t)42(t)Q2− 1

2
m(t)γ̇ (t)QQ̇+QF(t) exp

(
γ (t)

2

)
(22)

where

42(t) = γ̇ 2(t)

4
− ω2

0. (23)

The canonical momentum is

P = ∂L
∂Q̇
= m(t)

(
Q̇− γ̇ (t)

2
Q

)
= p exp

(
γ (t)

2

)
(24)

wherepphys= m(t)q̇ is the physical momentum andq is the physical position, whereasP
andQ are the mathematical canonical variables. As such the AD Hamiltonian is

H(P,Q; t) = P 2

2m0
e−ζ t + 1

2
m0ω

2
0Q

2 eζ t + γ0

2
PQ e−ζ t −QF(t) exp

(
γ (t)

2

)
(25)

and as in the case of a pure dissipative Hamiltonian, it does not represent the energy; it is
the generator of the motion of a TDM HO interacting with a heat reservoir.

The usual quantization of (25) gives

H(t) = P 2

2m0
e−ζ t + 1

2
m0ω

2
0Q

2 eζ t + γ0

4
{Q,P } e−ζ t −QF(t) exp

(
γ (t)

2

)
(26)

where the stochastic force continues as ac-number function. Finally, we recall that the
physical quantities are evaluated, quantitatively, as double means (quantum and classical)
over the products and sums of the physical operators,

qphys= Q exp

(
− γ (t)

2

)
pphys= P exp

(
− γ (t)

2

)
(27)

which are stochastic.
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4. The Heisenberg equations

From the Hamiltonian operator, (26), one has the following equations of motion for the
canonical position and momentum operators

dQH

dt
= PH

m0
e−ζ t + γ0

2
QH e−ζ t (28)

dPH

dt
= −m0ω

2
0QH eζ t − γ0

2
PH e−ζ t + F(t) exp

(
γ (t)

2

)
1. (29)

Differentiating (28) with respect tot and using (29) one obtains the second-order differential
equation,

d2QH

dt2
+ ζ dQH

dt
+
(
ω2

0 −
γ 2

0

4
e−2ζ t

)
QH = F(t)

m0
exp

(
γ (t)

2
− ζ t

)
1. (30)

Now, since (28) and (29) are linear, we assume the solution to be a sum of generators
(in the Heisenberg picture) of the Weyl–Heisenberg algebra, multiplied by time-dependent
coefficients,

QH(t) = u(t)Q0+ v(t)P0+ w(t)1. (31)

Substituting (31) into theq-number equation (30), this one splits into three uncoupled
c-number second-order differential equations for the time-dependent coefficients,

d2u

dt2
+ ζ du

dt
+
(
ω2

0 −
γ 2

0

4
e−2ζ t

)
u = 0 (32)

d2v

dt2
+ ζ dv

dt
+
(
ω2

0 −
γ 2

0

4
e−2ζ t

)
v = 0 (33)

d2w

dt2
+ ζ dw

dt
+
(
ω2

0 −
γ 2

0

4
e−2ζ t

)
w = F(t)

m0
exp

(
γ (t)

2
− ζ t

)
(34)

with the following initial conditions,

u(0) = 1
du

dt

∣∣∣∣
t=0

= γ0

2
(35)

v(0) = 0
dv

dt

∣∣∣∣
t=0

= 1

m0
(36)

w(0) = 0
dw

dt

∣∣∣∣
t=0

= 0. (37)

According to the appendix, the solutions to (32)–(34) are

u(t) = e−ζ t/2
{[(

ν − γ0

2ζ
− 1

2

)
Kν
(
γ0

2ζ

)
+ γ0

2ζ
Kν−1

(
γ0

2ζ

)]
Iν
(
γ0

2ζ
e−ζ t

)
−
[(
ν − γ0

2ζ
− 1

2

)
Iν
(
γ0

2ζ

)
− γ0

2ζ
Iν−1

(
γ0

2ζ

)]
Kν
(
γ0

2ζ
e−ζ t

)}
(38)

v(t) = 1

m0ζ
e−ζ t/2

[
Iν
(
γ0

2ζ

)
Kν
(
γ0

2ζ
e−ζ t

)
−Kν

(
γ0

2ζ

)
Iν
(
γ0

2ζ
e−ζ t

)]
(39)

w(t) = 1

m0ζ
e−ζ t/2

∫ t

0
exp

(
1

2
[γ (t1)− ζ t1]

)
F(t1)

×
[
Iν
(
γ0

2ζ
e−ζ t

)
Kν
(
γ0

2ζ
e−ζ t1

)
−Kν

(
γ0

2ζ
e−ζ t

)
Iν
(
γ0

2ζ
e−ζ t1

)]
dt1 (40)
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whereIν(x) andKν(x) are the modified Bessel functions of first and third kind, respectively.
The dimensionless order isν = �̃0/ζ , where�̃2

0 = ζ 2/4− ω2
0.

Now, isolating the momentum operator in (28) and using (31), one verifies that similarly
to the position operator in the Heisenberg picture, the momentum operator can be written
as

PH(t) = µ(t)Q0+ κ(t)P0+ η(t)1 (41)

where the new time-dependent coefficients are related to the old ones by the following
equations,

µ(t) ≡ m0

[
eζ t

du(t)

dt
− γ0

2
u(t)

]
(42)

κ(t) ≡ m0

[
eζ t

dv(t)

dt
− γ0

2
v(t)

]
(43)

η(t) ≡ m0

[
eζ t

dw(t)

dt
− γ0

2
w(t)

]
. (44)

The commutation relations [QH,i (t),PH,j (t)] = ih̄δi,j1 will hold only for

u(t)κ(t)− v(t)µ(t) = 1. (45)

This condition can be easily verified. Multiplying (42) byv(t) and (43) byu(t) and
subtracting the first from the second

u(t)κ(t)− v(t)µ(t) = m0 eζ t3(t) (46)

where

3(t) ≡ u(t)v̇(t)− v(t)u̇(t). (47)

But from (32) and (33) we have the first-order differential equation

d3(t)

dt
+ ζ3(t) = 0 (48)

the solution of which is

3(t) = 3(0) e−ζ t = 1

m0
e−ζ t (49)

where the second equality follows from (35) and (36). Now, substituting (49) into (46) we
obtain (45). Therefore, the initial conditions have a fundamental importance to ensure the
commutation relation and consequently, to preserve the Heisenberg uncertainty relation.

5. Mean energy and position–momentum uncertainty relations for 0< ζ/26 ω0

5.1. The quantized CK Hamiltonian

For the sake of comparision we shall first consider the pure CK amplifying Hamiltonian.
Since the derivation is quite simple and it has already been performed, see [9] and references
therein, we will only write down the expressions for the mean energy and variances of
momentum and position.

Assuming the under-amplified situation, 0< ζ/2 < ω0, one verifies that the mean
energy, in a coherent state withαR = αI , oscillates in time,

〈ECK〉 =
(

1+ ζ

ω0− ζ/2 sin2�0t

)
E0− ζω0

2�2
0

sin2�0t (50)
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and the average over one period of oscillation gives

〈ECK〉T = ω0

ω0− ζ/2
(
E0− 1

2

ζ/2

ω0+ ζ/2
)
. (51)

Thus, the average energy is larger than its initial valueE0, and the term in parenthesis is
never negative even if the initial state is the ground state,E0 = 1/2. However, at critical
amplification,ω0 = ζ/2, the behaviour is quite different; the CK Hamiltonian shows that
as time goes on the mean energy increases at a rate proportional tot2,

〈ECK〉c = E0+ (E0− 1
4)ζ

2t2. (52)

The variances for arbitrary operatorsA andB are defined asσA ≡ [〈A2〉 − 〈A〉2] and
σAB ≡

[〈 12{A,B}〉 − 〈A〉〈B〉], and the Robertson-Schrödinger (RS) [28] relation is

1AB ≡ σAσB − (σAB)2 > h̄2

4
. (53)

Then, for the position and momentum operators, and forω0 6= ζ/2, one has

σCK
q =

h̄

2m0ω0
e−ζ t

[
1+ ζ 2

2�2
0

sin2�0t + ζ

2�0
sin 2�0t

]
(54)

σCK
p =

h̄m0ω0

2
eζ t
[

1+ ζ 2

2�2
0

sin2�0t − ζ

2�0
sin 2�0t

]
(55)

σCK
qp = −

h̄ω0ζ

2�2
0

sin2�0t (56)

where the squeezing and stretching of variancesσCK
q and σCK

p occur owing to the TD
exponential factors, and the behaviour of variances interchanges by changing the sign of
ζ , ζ → −ζ . The crossed-varianceσCK

qp displays an oscillating correlation between the
variables, therefore mass increase in an HO results in a correlation of the variables. Now,
considering the product of variances,

σCK
q σCK

p =
h̄2

4

[
1+ ζ

2ω2
0

�4
0

sin4�0t

]
> h̄2

4
(57)

(σCK
qp )

2 = h̄
2

4

ζ 2ω2
0

�4
0

sin4�0t (58)

we verify that the Heisenberg inequality is satisfied and the RS expression is an invariant
[29],

1CK
qp = h̄2/4. (59)

When strong oscillations occur and the equipment responds more slowly, only average
values are recorded, thus the averaging of (57) and (58) over one period of oscillation, for
�0 6= 0, gives

σCK
q σCK

p

T = h̄
2

4

(
1+ 3ζ 2ω2

0

8�4
0

)
> h̄2

4
(60)

(σCK
qp )

2
T = h̄

2

4

3ζ 2ω2
0

8�4
0

. (61)

Moreover, it is easier to compare the above expressions to the variances, to be presented in
section 5.2.
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At critical amplification(�0 = 0) the variances becomes

σCK
q,c =

h̄

2m0ω0
e−ζ t

(
1+ ζ t + 1

2
ζ 2t2

)
(62)

σCK
p,c =

h̄m0ω0

2
eζ t
(

1− ζ t + 1

2
ζ 2t2

)
(63)

σCK
qp,c = −

h̄

4
ζ 2t2 (64)

where the polynomials in parentheses do not change the asymptotic behaviour of the
squeezing or stretching of variances. However, as the system evolves, their product increases
as t4,

σCK
q,c σ

CK
p,c =

h̄2

4

(
1+ 1

4
ζ 4t4

)
(65)

(σCK
qp,c

)2 = h̄
2

4

ζ 4t4

4
(66)

independently of the sign ofζ , but the RS relation remains constant, (59).

5.2. The AD Hamiltonian, solutions for weak damping(γ0/ζ � 1)

From the general solutions of section 4, we concentrate on the analysis of the mean values
of physical quantities such as the physical position and momentum, their variances and
energy for the regimes of under and critical amplification 0< ζ/2 6 ω0, but for theweak
dampinglimit γ0/ζ � 1. In this limit the parameter̃�0 and the orderν become purely
imaginary; however, for positive arguments and real positive index, the modified Bessel
functions behave as [30],

Iν
(
γ0

2ζ
e−ζ t

)
≈ 1

2ν0(ν + 1)

(
γ0

2ζ

)ν
e−�̃0t (67)

Kν
(
γ0

2ζ
e−ζ t

)
≈ 2ν−10(ν)

(
2ζ

γ0

)ν
e�̃0t . (68)

Since in our caseν is purely imaginary, by analytic continuation the above approximations
can be used, allowing us to obtain, up to the orderγ0/ζ , the position and momentum
operators,

QH(t) = e−ζ t/2
[(

cos�0t + γ0+ ζ
2�0

sin�0t

)
Q0+

(
1

m0�0
sin�0t

)
P0

− 1

m0�0
eγ (t)/2

∫ t

0
exp

(−ζ t1
2

)
sin[�0(t − t1)]F(t1) dt11

]
(69)

PH(t) = eζ t/2
{(
− m0ω

2
0

�0
sin�0t

)
Q0+

(
cos�0t − γ0+ ζ

2�0
sin�0t

)
P0

+eγ (t)/2
∫ t

0
exp

(
− ζ t1

2

)[
ζ

2�0
sin[�0(t − t1)]−cos[�0(t−t1)]

]
F(t1) dt11

}
(70)

where�2
0 = ω2

0 − 1
4ζ

2 = −�̃2
0.

The energy operator defined as

EAD(t) ≡
p2

phys

2m(t)
+ 1

2
m(t)ω2

0q
2
phys= exp[−γ (t)]

[
P 2

H

2m(t)
+ 1

2
m(t)ω2

0Q
2
H

]
(71)
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is a stochastic operator, so, in order to obtain the mean energy, we first substitute (69) and
(70) into (71), calculate the mean value in a coherent-state|α〉, with αR = αI , and then take
the average over the stochastic force,

〈〈EAD(t)〉〉 =
{[
(u(t)+m0ω0v(t))

2 eζ t +
(
κ(t)+ µ(t)

m0ω0

)2

e−ζ t
]
E0

2

−1

2

[
m0ω0u(t)v(t) eζ t + µ(t)κ(t)

m0ω0
e−ζ t

]
+1

2

[
m0ω0〈w2(t)〉 eζ t + 〈η

2(t)〉
m0ω0

e−ζ t
]}

e−γ (t) (72)

thus resulting in the following time-oscillating mean energy,

〈〈EAD(t)〉〉 =
[(

1+ ζ

ω0− ζ/2f0 sin2�0t

)
E0− ζω0

2�2
0

f0 sin2�0t

]
e−γ (t)

+�
2
0

ω2
0

γ0

2ζ
coth

(
h̄ω0

2kBT

)[
(1− e−ζ t )+ ζ 2

2�2
0

sin2�0t

]
(73)

where the double brackets stands for the ensemble average and quantum mean. The
dimensionless energy is written in units of ¯hω0, E0 is the initial energy andf0 = 1+ γ0/ζ .
Asymptotically the system attains a stationary state with mean energy,

lim
t→∞〈〈EAD(t)〉〉 =

[(
1+ ζ

ω0− ζ/2f0 sin2�0t

)
E0− ζω0

2�2
0

f0 sin2�0t

]
e−γ0/ζ

+�
2
0

ω2
0

γ0

2ζ
coth

(
h̄ω0

2kBT

)(
1+ ζ 2

2�2
0

sin2�0t

)
. (74)

For ω0 6= ζ/2, taking the average over one period of oscillation in (74), and keeping only
terms linear inγ0/ζ , we get

〈〈EAD〉〉T = 〈ECK〉T − γ0

ζ

[
E0− 1

2
coth

(
h̄ω0

2kBT

)]
(75)

where 〈ECK〉T is given by (51). As expected, if the initial energy is higher than the
thermalization energy,E0 > 1

2 coth(h̄ω0/2kBT ), then owing to dissipation, the mean
asymptotic energy of the TDM HO stabilizes at a value that is lower than that for
the CK Hamiltonian (51). Otherwise, the oscillator gains energy not only as a result
of the mass increase but also by receiving energy from the thermalized environment,
E0 <

1
2 coth(h̄ω0/2kBT ). It is worth paying attention to the fact that the mean energy

(75) depends on both parameters of the reservoir, the specific damping constantγ0 and the
temperatureT , whereas in the case of pure damping (constant mass) the mean asymptotic
energy depends only on the temperature (section 5.3). At the critical value,�0 = 0,
the TDM HO has its energy increased at a rate proportional tot2, thus, for γ0/ζ � 1,
asymptotically, it will not feel the environment and the energy will coincide with (52).

The variances of the physical position and momentum can be written as

σAD
q =

h̄

2m0ω0
exp[−γ (t)][u2(t)+m2

0ω
2
0v

2(t)+ 2m0ω0〈w2(t)〉] (76)

σAD
p = h̄m0ω0

2
exp[−γ (t)]

[
κ2(t)+ µ

2(t)

m2
0ω

2
0

+ 2

m0ω0
〈η2(t)〉

]
(77)

σAD
qp = exp[−γ (t)]

[
h̄

2m0ω0
u(t)µ(t)+ m0ω0

2
v(t)κ(t)+ 〈w(t)η(t)〉

]
(78)
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and forγ0� ζ we have

σAD
q =

(
h̄

2m0ω0

)
e−[γ (t)+ζ t ]

{
1+

[
ζ 2

2�2
0

sin2�0t + ζ

2�0
sin 2�0t

]
f0+ γ0

ζ
eγ (t)

×
[
(1− e−ζ t )+ ζ 2

2�2
0

sin2�0t − ζ

2�0
sin 2�0t

]
coth

(
h̄ω0

2kBT

)}
(79)

σAD
p =

(
h̄m0ω0

2

)
e−[γ (t)−ζ t ]

{
1+

[
ζ 2

2�2
0

sin2�0t − ζ

2�0
sin 2�0t

]
f0+ γ0

ζ
eγ (t)

×
[
(1− e−ζ t )+ ζ 2

2�2
0

sin2�0t + ζ

2�0
sin 2�0t

]
coth

(
h̄ω0

2kBT

)}
(80)

σAD
qp = −

h̄

2

{
ω0ζf0

�2
0

e−γ (t) sin2�0t + γ0�
2
0

ω3
0

[
(1− e−ζ t )−

(
1− ζ 2

4�2
0

)
sin2�0t

− ζ

2�0
sin 2�0t

]
coth

(
h̄ω0

2kBT

)}
. (81)

Comparing (54) and (55) with (79) and (80), one verifies that squeezing occurs at the same
rate, although here there is an additional (lowest order-correction) term in the braces, owing
to the environment.

Now, taking the asymptotic value of the productσAD
q σAD

p and (σAD
qp )

2, which does not
depend on the TD exponential factors, and then considering terms up to first order inγ0/ζ ,
one finds

σAD
q σAD

p = h̄
2

4

{
1+ ω

2
0ζ

2

�4
0

sin4�0t − 2γ0

ζ

(
1+ ζ 2

2�2
0

sin2�0t

)
+2γ0

ζ

[
1+ 2ζ 2

�2
0

sin2�0t − ζ 2

�2
0

(
1− ζ 2

4�2
0

)
sin4�0t

]
× coth

(
h̄ω0

2kBT

)}
> h̄2

4
(82)

(σAD
qp )

2 = h̄
2

4

{
ζ 2ω2

0

�4
0

sin4�0t + 2γ0

ζ

ζ 2

ω2
0

sin2�0t

×
[

1− ζ

2�0
sin 2�0t −

(
1− ζ 2

4�2
0

)
sin2�0t

]
coth

(
h̄ω0

2kBT

)}
. (83)

Consequently, the RS expression is

1AD = h̄
2

4

{
1− 2γ0

ζ

(
1+ ζ 2

2�2
0

sin2�0t

)
+ 2γ0

ζ

[
1+ ζ 2

�2
0

(
1+ ζ 2

4ω2
0

)
sin2�0t

+ ζ 3

2�0ω
2
0

sin2�0t sin 2�0t − ζ 4

4�4
0

(
1− ζ 2

2ω2
0

)
sin4�0t

]
× coth

(
h̄ω0

2kBT

)}
> h̄2

4
. (84)

However, although the Heisenberg and RS inequalities are satisfied, as in the preceding
subsection, they are easier to view when considering the average over one period of
oscillation for�0 6= 0,

σAD
q σAD

p

T = h̄
2

4

{
1+ 3ω2

0ζ
2

8�4
0

− 2γ0

ζ

[
ω2

0

�2
0

−
(

1+ 5ζ 2

8�2
0

+ 3ζ 4

32�4
0

)
coth

(
h̄ω0

2kBT

)]}
(85)
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(σAD
qp )

2
T = h̄

2

4

{
3ζ 2ω2

0

8�4
0

+ 2γ0

ζ

ζ 2

�2
0

(
1+ ζ 2

2ω2
0

)
coth

(
h̄ω0

2kBT

)}
(86)

1AD
T = h̄

2

4

{
1+ 2γ0

ζ

[(
1+ ζ 2

2�2
0

+ ζ 4

32�4
0

+ ζ 6

64�4
0ω

2
0

)
coth

(
h̄ω0

2kBT

)
− ω2

0

�2
0

]}
. (87)

Even when the TDM HO interacts with the vacuum, atT = 0 K, the parameterγ0 is
still present in the products of variances, contributing with an additional term in (85), in
comparison with (60),

σAD
q σAD

p

T
(0 K) = h̄

2

4

[
1+ 3ω2

0ζ
2

8�4
0

+ 2γ0

ζ

3ζ 2ω2
0

8�4
0

]
> h̄2

4
(88)

1AD
T
(0 K) = h̄

2

4

[
1+ 2γ0

ζ

ζ 2

4�2
0

(
1+ ζ 2

8�2
0

+ ζ 4

16ω2
0�

2
0

)]
> h̄2

4
. (89)

5.3. Recovering the case of the dissipative HO

Considering the purely dissipative HO,ζ = 0 in (30), one finds

QH(t) =
(

cos�t + γ0

2�
sin�t

)
Q0+

(
1

m0�
sin�t

)
P0

− 1

m0�

∫ t

0
exp

(
γ0t1

2

)
sin[�(t − t1)]F(t1) dt11 (90)

PH(t) =
(
− m0ω

2
0

�
sin�t

)
Q0+

(
cos�t − γ0

2�
sin�t

)
P0

+
∫ t

0
exp

(
γ0t1

2

)[
γ0

2�
sin[�(t − t1)] − cos[�(t − t1)]

]
F(t1) dt11 (91)

where�2 = ω2
0 − γ 2

0 /4. This case is identical to the original Svin’in treatment of a linear
HO with friction [9, 18].

Following the same steps as in section 5.2, taking the quantum mean energy in a coherent
state and the ensemble average, we obtain

〈〈E(t)〉〉 = E0 exp(−γ0t)+ 1

2
coth

(
h̄ω0

2kBT

)
[1− exp(−γ0t)] (92)

as expected, and the thermalized asymptotic value is

lim
t→∞〈〈E(t)〉〉 =

1

2
coth

(
h̄ω0

2kBT

)
(93)

which does not depend on the parameterγ0, as in the case of the asymptotic mean energy
of the TDM HO (75).

Now, using calculations similar to those of the previous subsection, one obtains the
variances

σq = h̄

2m0ω0
e−γ0t

{
1+ γ 2

0

2�2
sin2�t + γ0

2�
sin 2�t

+
[
( eγ0t − 1)− γ 2

0

2�2
sin2�t − γ0

2�
sin 2�t

]
coth

(
h̄ω0

2kBT

)}
(94)
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σp = h̄m0ω0

2
e−γ0t

{
1+ γ 2

0

2�2
sin2�t − γ0

2�
sin 2�t

+
[
( eγ0t − 1)− γ 2

0

2�2
sin2�t + γ0

2�
sin 2�t

]
coth

(
h̄ω0

2kBT

)}
(95)

σqp = h̄ω0γ0

2�2

[
coth

(
h̄ω0

2kBT

)
− 1

]
e−γ0t sin2�t (96)

and their asymptotic values are those of a thermalized HO,

lim
t→∞ σq =

h̄

2m0ω0
coth

(
h̄ω0

2kBT

)
(97)

lim
t→∞ σp =

h̄m0ω0

2
coth

(
h̄ω0

2kBT

)
(98)

lim
t→∞ σqp = 0 (99)

that also do not depend onγ0. Since thermalization destroys thep–q correlation (99), the
Heisenberg product of variances goes to (5.25) of [9],

lim
t→∞ σqσp =

h̄2

4

[
coth

(
h̄ω0

2kBT

)]2

. (100)

6. Summary and conclusions

We recall that, classically, the CK Hamiltonian can correctly describe either a dissipative
HO or a TDM HO; the distinction is made in the definition of the physical variables:
position, linear momentum and energy. The quantization of that Hamiltonian and the
subsequent solution of the Heisenberg equation of motion is compatible with the principles
of quantum mechanics only when the CK Hamiltonian describes a TDM HO. For the
quantum dissipative HO, a phenomenological TD stochastic force must be introduced in
the equations of motion (in order to take into account the effects of quantum fluctuations
produced by the environment) and, as prescribed by Havas, an integrating factor must be
introduced in the Lagrange function, before performing the quantization. Care must be
taken in distinguishing between the mathematical operators and the physical ones, since
they do not coincide.

Here we considered an HO having its energy amplified by a TDM, and also being
subject to a friction force due to the interaction with the environment. We first verified
that the exponential integrating factor of the Lagrange function has an argument that is
no longer linear in time, as in the case of a purely dissipative HO Hamiltonian. Then,
obtaining the Hamilton function we quantized it and solved exactly the Heisenberg equation
of motion for canonical position and momentum operators. Next we used these stochastic
operators to calculate the mean energy and the variances of momentum and position in
the under-amplified regime and weak-damping limit. The asymptotic expressions were
displayed verifying the squeezing of variances together with a time-oscillation. We also
verified that the Heisenberg and Robertson–Schrödinger inequalities are satisfied. Finally,
it is worth noting that the thermalized energy, (93), and the product of variances, (100),
depend essentially on the temperature of the reservoir, whereas the stationary values of
the TDM HO depend (besides, obviously, on the amplifying parameterζ ) on the friction
constantγ0. Therefore, in order to determine the parameter of the environmentγ0, out from
the asymptotic values of the mean energy or from the variances, its becomes necessary to
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consider a mass-accreting HO. In conclusion we showed that it is possible to construct a
Hamiltonian that gives a quantal description of a dissipative mass-accreting HO.
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Appendix. Solutions of the Heisenberg equations

We shall look for the analytic solution of the differential equation (32),

d2u

dt2
+ ζ du

dt
+
(
ω2

0 −
γ 2

0

4
e−2ζ t

)
u = 0. (101)

In order to simplify (101), we first introduce the new functionũ(t)

u(t) = e−ζ t/2ũ(t) (102)

and so obtain

d2ũ

dt2
−
(
�̃2

0+
γ 2

0

4
e−2ζ t

)
ũ = 0 (103)

where �̃2
0 = 1

4ζ
2 − ω2

0. Second, we do a change of variables, by introducing the new
dimensionless variable

x = γ0

2ζ
e−ζ t

and rewrite (103) as

d2ũ

dx2
+ 1

x

dũ

dx
−
(

1+ ν
2

x2

)
ũ = 0 (104)

with ν2 = �̃0
2
/ζ 2. The solutions of (104) are found in the literature [30], namely,

ũ(x) = A1Iν(x)+ A2Kν(x) (105)

where Iν(x) and Kν(x) are the modified Bessel functions of the first and third kind,
respectively. The dimensionless orderν characterizes the regime of frequencies of the
solution. The constantsA1 andA2 are determined from the initial conditions foru(t) (see
(35)),

A1 =
(
ν − γ0

2ζ
− 1

2

)
Kν
(
γ0

2ζ

)
+ γ0

2ζ
Kν−1

(
γ0

2ζ

)
(106)

A2 = −
(
ν − γ0

2ζ
− 1

2

)
Iν
(
γ0

2ζ

)
+ γ0

2ζ
Iν−1

(
γ0

2ζ

)
. (107)

Now, substituting the results in (105), we obtain

u(t) = e−ζ t/2
{[(

ν − γ0

2ζ
− 1

2

)
Kν
(
γ0

2ζ

)
+ γ0

2ζ
Kν−1

(
γ0

2ζ

)]
Iν
(
γ0

2ζ
e−ζ t

)
−
[(
ν − γ0

2ζ
− 1

2

)
Iν
(
γ0

2ζ

)
− γ0

2ζ
Iν−1

(
γ0

2ζ

)]
Kν
(
γ0

2ζ
e−ζ t

)}
. (108)
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This same procedure can be repeated for the coefficientv(t), giving the solution

v(t) = e−ζ t/2

m0ζ

[
Iν
(
γ0

2ζ

)
Kν
(
γ0

2ζ
e−ζ t

)
−Kν

(
γ0

2ζ

)
Iν
(
γ0

2ζ
e−ζ t

)]
. (109)

The solution of the differential equation for the coefficientw(t) is somewhat different, since
this equation is non-homogeneous,

d2w

dt2
+ ζ dw

dt
+
(
ω2

0 −
γ 2

0

4
e−2ζ t

)
w = F(t)

m0
exp

[
γ (t)

2
− ζ t

]
. (110)

Using the same procedure as before, we obtain

d2w̃

dx2
+ 1

x

dw̃

dx
−
(

1+ ν
2

x2

)
w̃ = Q(x) (111)

whose solution is

w̃(x) = B1Iν(x)+ B2Kν(x)+
∫ x

[Iν(x)Kν(x̃)−Kν(x)Iν(x̃)]x̃Q(x̃) dx̃. (112)

With the initial conditions forw(t) given by (37), we obtain

w(t) = e−ζ t/2

m0ζ

∫ t

0
exp

{
1

2
[γ (t1)− ζ t1]

}[
Iν
(
γ0

2ζ
e−ζ t

)
Kν
(
γ0

2ζ
e−ζ t1

)
−Kν

(
γ0

2ζ
e−ζ t

)
Iν
(
γ0

2ζ
e−ζ t1

)]
F(t1) dt1. (113)

Finally, having the set of solutionsu, v,w that determines the operatorQH(t), then by using
(42)–(44), it becomes trivial to obtain the set of coefficientsµ, κ, η, which determines the
momentum operatorPH(t),

µ(t) = m0ζ eζ t/2
{[(

ν − γ0

2ζ
− 1

2

)
Kν
(
γ0

2ζ

)
+ γ0

2ζ
Kν−1

(
γ0

2ζ

)]
×
[(
ν − γ0

2ζ
e−ζ t − 1

2

)
Iν
(
γ0

2ζ
e−ζ t

)
− γ0

2ζ
e−ζ tIν−1

(
γ0

2ζ
e−ζ t

)]
−
[(
ν − γ0

2ζ
− 1

2

)
Iν
(
γ0

2ζ

)
− γ0

2ζ
Iν−1

(
γ0

2ζ

)]
×
[(
ν − γ0

2ζ
e−ζ t − 1

2

)
Kν
(
γ0

2ζ
e−ζ t

)
+ γ0

2ζ
e−ζ tKν−1

(
γ0

2ζ
e−ζ t

)]}
(114)

κ(t) = eζ t/2
{(
ν − γ0

2ζ
e−ζ t − 1

2

)[
Iν
(
γ0

2ζ

)
Kν
(
γ0

2ζ
e−ζ t

)
−Kν

(
γ0

2ζ

)
Iν
(
γ0

2ζ
e−ζ t

)]
+ γ0

2ζ
e−ζ t

[
Iν
(
γ0

2ζ

)
Kν−1

(
γ0

2ζ
e−ζ t

)
+Kν

(
γ0

2ζ

)
Iν−1

(
γ0

2ζ
e−ζ t

)]}
(115)

η(t) = eζ t/2
∫ t

0
exp

{
1

2
[γ (t1)− ζ t1]

}
F(t1)

{(
ν − γ0

2ζ
e−ζ t − 1

2

)
×
[
Iν
(
γ0

2ζ
e−ζ t

)
Kν
(
γ0

2ζ
e−ζ t1

)
−Kν

(
γ0

2ζ
e−ζ t

)
Iν
(
γ0

2ζ
e−ζ t1

)]
− γ0

2ζ
e−ζ t

×
[
Iν−1

(
γ0

2ζ
e−ζ t

)
Kν
(
γ0

2ζ
e−ζ t1

)
+Kν−1

(
γ0

2ζ
e−ζ t

)
Iν
(
γ0

2ζ
e−ζ t1

)]}
dt1.
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